报告题目: Traveling waves and spreading properties for a reaction-diffusion competition model with seasonal succession
报告人:王明新 教授 哈尔滨工业大学
邀请人:李善兵 副教授
报告时间:2021年11月29日(周一)10:00-11:00
报告地点:腾讯会议458-126-196
报告人简介:哈尔滨工业大学二级教授,在Proc. London Math. Soc., Trans. Amer. Math. Soc., Indiana Univ. Math. J., Math. Models Methods Appl. Sci., J. Functional Analysis, SIAM系列, Nonlinearity, CVPDE, J. Differential Equations, J. London Math. Soc., Physica D, J. Dyn. Diff. Equat.等国内外核心期刊上发表论文260多篇,其中被SCI检索的有230篇,他引4千余篇次。CRC Press、科学出版社出版和高等教育出版社专著7本,参与编写了科学出版社出版的“数学大辞典”,清华大学出版社出版教材4本。主持完成国家自然科学基金项目9项,在研一项;主持完成省部级项目8项。获得教育部科技进步三等奖2次,江苏省科技进步二等奖和教育部自然科学二等奖各1次,江苏省首届青年科学家奖提名奖,河南省青年科技奖,河南省优秀专家,江苏省优秀研究生指导教师,华英文化教育基金奖。
报告摘要:In this talk, we investigate the propagation dynamics of a reaction-diffusion competition model with seasonal succession in the whole space. Under the weak competition condition, the corresponding kinetic system admits a globally stable positive periodic solution (\hat u(t), \hat v(t)). By the method of upper and lower solutions and the Schauder fixed point theorem, we first obtain the existence and nonexistence of traveling wave solutions connecting $(0,0)$ to (\hat u(t), \hat v(t)). Then we use the comparison arguments to establish the spreading properties for a large class of solutions.
主办单位:best365亚洲版登录