报告题目:Boundary-layer problem for the Keller-Segel model with physical boundary conditions
报 告 人:王治安 教授 香港理工大学
邀请人:王裴昕
报告时间:2024年10月24日(周四) 10:00(北京时间)
报告地点: 腾讯会议:464-235-970 会议密码:1024
https://meeting.tencent.com/dm/HMIX7SzPnT1v
报告人简介:王治安, 香港理工大学应用数学系教授,华中师大本科硕士, 加拿大艾伯塔大学应用数学博士,美国明尼苏达大学应用数学所博士后。主要从事与生物数学相关的偏微分方程建模及分析研究。目前已在Proc. London Math. Soc 、 J. London Math. Soc. 、 J. Math. Biol.、JMPA、CPDE、SIAM J. Math. Anal.、SIAM J. Appl. Math. 、Indiana U. Math. J. 等杂志上发表学术论文100多篇。现担任杂志 J. Mathematical Biology, DCDS-B, MBE等杂志编委。曾获香港数学会青年学者奖。
报告摘要:In this talk, we shall discuss the boundary layer problem of the singular Keller-Segel model with physical boundary conditions in any dimensions. First, we obtain the existence and uniqueness of boundary-layer solution to the steady-state problem and identify the boundary-layer profile and thickness near the boundary. Then we find the asymptotic expansion of boundary-layer profile in terms of the radius for the radially symmetric domain, which can assert how the boundary curvature affects the boundary-layer thickness. Finally, we establish the nonlinear stability of the unique boundary-layer steady state solution with exponential convergence rate for the radially symmetric domain.
主办单位:best365亚洲版登录