学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 2024年7月1日(周一) 15:00 报告地点 南校区会议中心120会议室
报告人 冯可

报告题目:Some progress on geometric ideal triangulation

报告人:冯可 副教授 电子科技大学

邀请人:李欢欢

报告时间:2024年7月1日(周一) 15:00

报告地点: 南校区会议中心120会议室

报告人简介: 冯可,2016年博士毕业于南京大学,2017-2020年北京大学数学科学学院博士后,现为电子科技大学数学科学学院副教授, 主要研究领域为几何分析和几何拓扑,主要工作成果涉及“Thurston理想剖分”猜想等流形几何化问题,相关成果发表在 Geom.&Topol., Adv. Math., IMRN 等数学期刊上。

报告摘要:Gluing ideal tetrahedra plays a crucial role in the construction of hyperbolic 3-manifolds. While, it is still not known that whether a hyperbolic 3-manifold admits a geometric ideal triangulation. In this talk, we will show our some progress to hyperbolize and further obtain geometric triangulations of 3-manifolds. To be precise, we will show the rigidity of hyperbolic polyhedral metrics on 3-manifolds, which is a joint work with Huabin Ge. And then, we will show the connections between 3D-combinatorial Ricci flows and Thurston's geometric ideal triangulations. At the same time, we will also give some topological conditions to guarantee the convergence of the combinatorial Ricci flows and furthermore the existence of geometric ideal triangulations.

主办单位:best365亚洲版登录

上一篇:Quantitative stability for the Caffarelli-Kohn-Nirenberg inequality

下一篇:Limit cycles bifurcating near homoclinic and heteroclinic loops in near-Hamiltonian systems

关闭