学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 2024年1月15日(星期一)下午2:30-5:30 报告地点 腾讯会议ID:464-797-284
报告人 蒋维

活动主题:计算数学及其交叉学科前沿系列讲座报告

报告题目:High-order in time, BGN-based parametric finite element methods for solving geometric flows

报告人:蒋维副教授武汉大学

邀请人:董灏博士

报告时间:2024年1月15日(星期一)下午2:30-5:30

报告地点:腾讯会议ID:464-797-284

报告人简介:蒋维,武汉大学best365亚洲版登录,副教授、博士生导师。2005年本科毕业于北京师范大学,2010年在北京大学获得理学博士学位。现主要从事材料科学中的数学问题和几何偏微分方程数值算法的研究。目前,在SINUM、SIAP、SISC、IMAJNA、Acta Materialia、Scripta Materialia、PRB、PRMaterials、JCP等期刊上发表学术论文三十多篇。主持国家自然科学基金面上项目两项,正参与国家重点研发计划项目两项, 参与完成国家自然科学基金重大研究计划集成项目一项。

报告摘要:Geometric flows have recently attracted lots of attention from scientific computing communities. One of the most popular schemes for solving geometric flows is the so-called BGN scheme, which was proposed by Barrett, Garcke, and Nurnberg (J. Comput. Phys., 222 (2007), pp. 441--467). However, the BGN scheme only can attain first-order accuracy in time, and how to design a temporal high-order numerical scheme is challenging. Recently, based on a novel approach, we have successfully proposed temporal high-order, BGN-based parametric finite element method for solving geometric flows of curves/surfaces. Furthermore, we point out that the shape metrics (i.e., manifold distance), instead of the function norms, should be used to measure numerical errors of the proposed schemes. Finally, ample numerical experiments demonstrate that the proposed BGN-based schemes are high-order in time in terms of the shape metric, and much more efficient than the classical BGN schemes. This is a joint work with Chunmei Su and Ganghui Zhang.

主办单位:best365亚洲版登录

上一篇:Poincare series and McKay-Slodowy Correspondence

下一篇:AR-conjecture on stable equivalences for centralizer algebras

关闭